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ABSTRACT

Sketches have been widely utilized throughout history for various purposes, from conveying ideas

to recording observations. Despite the rise of language and digital media, the unparalleled expres-

siveness of sketches remains evident, often prompting us to resort to pen and paper or digital tools

to visually capture our thoughts to convey minute details not possible through other modalities

like text and speech.

Over the past decade, sketch research has flourished, covering an array of tasks ranging from

traditional classification and synthesis to more specialized areas such as visual abstraction mod-

eling [87], style transfer [106], and continuous stroke fitting [26]. One area that has garnered

substantial attention is sketch-based image retrieval (SBIR), where sketches are used to retrieve

relevant images from databases (content-based image retrieval). Fine-grained sketch-based im-

age retrieval (FG-SBIR) has notably emerged as a significant focus, emphasizing nuanced details

within sketches.

However, amidst the strides made in the field, we recognize a particular gap in the research

landscape. While sketches’ potential for image retrieval has been extensively explored, their appli-

cability in object detection tasks has received comparatively less attention. Recent research [130],

[24] and [102] has naturally evolved from SBIR to the more challenging task of sketch-guided

object localization (SGOL) [102], [131]. SGOL entails precisely identifying and localizing ob-

jects within images based on sketches, a task that holds immense potential in enhancing various

applications.

However, all the prior works focus on object detection using a single sketch patch at inference

time. This limitation restricts end-users to detecting only simple instances. For example if a user

draws a sketch of a zebra, the algorithm will localize all instances of zebras within the photo. This

brings attention to a crucial issue: the inability to detect objects within natural images with any

form of spatial awareness. For instance, users might be interested in detecting complex scenes [24]

such as a “dog” to the right of a “person” or a “group of 3 zebras together”, involving multiple

objects with meaningful spatial alignment.
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In this study, for the first time, we address this limitation by introducing a modified version of

DETR [16]. Our approach incorporates a query canvas that empowers end users to draw multiple

sketch instances. This allows for the detection of objects while taking their spatial alignment into

account.

Moreover, our ablation studies reveal that the decoder conditioning, as proposed by [102] is un-

necessary for localizing instances. We also establish that simple cross-modality fusion techniques,

such as addition, suffice to attain sufficiently accurate results as opposed to more complicated

methods.

Additionally, we introduce a cross-modality encoder block as a viable alternative to both addi-

tion and concatenation. This approach aims to enhance the accuracy of detecting multiple sketch

instances without requiring any decoder conditioning.

Our main contributions include:

• Detection with Spatial Awareness: Our approach incorporates a query canvas that em-

powers end users to draw multiple sketch instances. This allows for the detection of objects

while taking their spatial alignment into account.

• Alignment of Photos and Sketches:

– Utilizing Concatenation or Addition Operator: We achieve photo-sketch alignment

through fusion techniques such as concatenation or the addition operator.

– Cross-attention Encoder block: We introduce a cross-modality encoder block as a

promising alternative to both addition and concatenation, yielding improved accuracy.

• Extending to Unseen Classes: We use a simple trick of redefining the labels as either

“object” or “no-object”, allowing for a broader generalization across previously unseen cat-

egories.

• Open source code base: We open-source our code base so that fellow researchers can

conduct further experiments with minimal downtime. The code base is a modification

of the official DETR [16] implementation and is available at https://github.com/

deepwilson/detr.
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1 INTRODUCTION

The use of sketches as a means of communication dates back centuries and offers a unique and

versatile way of conveying information. Sketches are expressive in nature, which enables them to

encapsulate minute visual cues, while simultaneously maintaining a sparse structure. Other modal-

ities may not be able to capture such intricate details which makes sketches a suitable modality

for varied downstream tasks. With the emergence of touchscreen and digital pen devices, sketches

have become pervasive for a broad range of tasks, including retrieval [30], object localization

[130] and detection [24] in natural images.

1.1 Sketch-based Image Retrieval

Among various tasks centered around sketch modality, considerable attention has been directed

towards sketch-based image retrieval (SBIR) with notable contributions from [30, 153, 5]. SBIR,

a prominent research area within content-based image retrieval (CBIR) enables users to search for

images using free-hand sketches. Typically, input sketches are characterized by a high level of

abstraction and provide a rough representation of the overall shape and key local features of the

target object or scene. In contrast, the gallery images in SBIR datasets often consist of realistic

photographs or intricate artworks, making them significantly different from the input sketches.

The primary goal of SBIR is to locate images that share similarities in both the overall shape

and salient local details with the input sketch. SBIR frameworks signify a notable advancement

in the practical application of sketches within real-world contexts. SBIR was initially framed as

a category-level retrieval problem. However, it soon became evident that the primary advantage

of sketches over text or tag-based retrieval lay in their ability to convey fine-grained details [6].

Consequently, this shifted the focus towards fine-grained SBIR, which aims to retrieve a spe-

cific photograph within a gallery placing a strong emphasis on capturing and retrieving highly

detailed information within images. While traditional SBIR primarily targets category-level re-

trieval, where sketches are used to identify broad object or scene categories, fine-grained SBIR

takes the process a step further retrieving gallery images by paying attention to minute details.

1.2 Sketch-based Object Detection

Recent works though limited in number have logically progressed beyond conventional SBIR and

FG-SBIR, transitioning towards the detection/localization of objects within images, leveraging
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sketches as guides [130, 102, 131]. A visual representation of this concept is depicted in Figure

1.1, where three distinct sketches are localized within a single natural image [102].

Figure 1.1: Example of object localization

Sketch-based object detection holds significant promise, particularly due to its potential real-

world applications. While other modalities like text can be utilized, sketches offer several advan-

tages, including the ability to convey intricate details that may be challenging to express through

text descriptions.

Some of the advantages of using sketches over text for retrieval includes:

• Visual Precision: Sketches excel in providing precise and detailed representations of ob-

jects or scenes, especially in scenarios requiring fine-grained object localization.

• Language Independence: Sketches are universally understandable, transcending language

barriers and making them accessible to a global audience. Text queries, in contrast, may

encounter linguistic complexities or necessitate translations in multilingual settings.

• Simplicity: Sketches are often simpler to create than textual descriptions. Users may find it

more straightforward to sketch a rough representation of an object rather than struggling to

articulate it in words, particularly for intricate or abstract visual concepts.
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• Reduced Ambiguity: Text-based queries can sometimes introduce ambiguity or require

interpretation. Sketches mitigate this issue by offering a direct visual representation of the

user’s search intent.

1.3 Current approaches

1.3.1 Sketch-guided object localization in natural images

Tripathi et al. [130] first proposed a framework to tackle such a problem in terms of one-shot

object detection given a sketch as a query. However, several limitations have been pointed out

by [24] with respect to the problem definition as well as architectural designs. Firstly, instead

of fine-grained matching, a sketch was used to specify the object category (which is easier via

text/keyword [43, 86]), thus overlooking the potential of the sketch to model fine-grained details.

Additionally, the detection pipeline in this work is based on traditional object detection pipelines

such as Faster R-CNN. Such code-bases have a lot of hand-designed components like a non-

maximum suppression procedure or anchor generation that explicitly encode prior knowledge,

making it difficult to run.

We attempted to use the code-base provided by Tripathi et al. [130], however, we couldn’t

run the code due to conflicts in dependencies. Our investigation led us to consider the feasibil-

ity of adopting a straightforward yet effective framework, such as DETR (Data-efficient Image

Transformer) [16], for the task of object detection.

1.3.2 Localizing Infinity-shaped fishes: Sketch-guided object localization in the

wild

During our literature survey, we came across the work of Pau et al. [102]. They employed the

existing DETR framework [16] that eliminated the need for hand-crafted components in object

detection and detected objects from photos using sketch queries. A notable innovation in their ap-

proach named Sketch-DETR was the introduction of a technique termed object query conditioning.

In this method, the features extracted from sketch queries were jointly fed into the transformer de-

coder alongside the query objects. The primary motivation behind this conditioning scheme was

to provide the query object with not only spatial information but also contextual information re-

garding the content it should search within the image [102].
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1.4 Shortcomings of Current Approaches and Solution Approach

1.4.1 Can process only a single query at a time

A significant limitation in the existing approaches lies in their constraint of processing only a single

sketch query at a time (see Figure 1.1). This limitation presents a substantial obstacle for various

downstream applications, particularly for users interested in pinpointing individual instances of

objects within images.

1.4.2 Cannnot retrieve complex scene based queries with spatial alignment

Current methods accept a single sketch input patch and detect all object instances corresponding

to that specific patch within the image. However, this approach falls short when users aim to

identify a particular instance among multiple objects within the same image. Additionally, when

users wish to detect another category of object, they must create and input another sketch patch,

requiring a separate run of the model inference code. This constraint limits users to querying only

one class/category at a time.

1.4.3 Addressing Data Scarcity Issue in Paired Hand-Drawn Sketch Queries and

Annotated Images

Furthermore, a significant challenge faced by previous methods is the scarcity of data. Acquiring

paired hand-drawn queries alongside annotated images poses considerable difficulties. Can we

explore synthetic data approaches to mitigate this data scarcity problem?

To overcome the above mentioned limitations, we propose an innovative solution: providing

users with a canvas where they can simultaneously draw multiple sketches (see Figure 1.2). This

canvas-based approach empowers users to precisely define and retrieve individual objects within

complex scenes. For instance, in an image featuring two dogs—one on the left and the other on

the right—if a user seeks to retrieve only the dog on the right, the canvas method offers a more

versatile and user-friendly solution.

The canvas-based approach we propose effectively addresses above mentioned challenges en-

countered in prior methods:
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1. Spatial Alignment: This approach can detect objects with precise spatial alignment. For

example, in an image featuring two dogs—one on the left and the other on the right—the

user can specify the retrieval of only the dog on the right, ensuring accurate localization.

2. Complex Multi-Sketch Multi-Category Queries: The canvas-based approach possesses

the capability to process complex multi-sketch queries. When a user draws a dog to the

left of a person on the canvas, the system can retrieve images that precisely match this

specification while preserving their spatial alignment. This helps in sophisticated object

retrieval tasks.

3. Efficiency with Single Model Inference for Multiple Classes: With the canvas-based ap-

proach, a single model inference can detect multiple classes of objects efficiently, reducing

the overall computational overhead thereby improving the efficiency of the system.

4. Synthetic sketches to alleviate data scarcity: Leveraging synthetic sketches allows us to

train the model for a wider range of applications, eliminating the need for collecting human-

drawn sketches, which can be a laborious process.

1.5 Central theme of our thesis

Our primary research focus revolves around simplifying the process of querying multiple objects

without the need for constant redrawing. We aim to provide users with a canvas, enabling them to

sketch complex scenes and subsequently retrieve objects while preserving spatial alignment and

fidelity.

In this work, we aim to build upon the research of [24], [102] and [131], enabling end-users to

use multiple sketch queries to detect multiple object instances drawn on an input canvas as shown

in Figure 1.2.

Figure 1.2: Example of object localization using multiple sketch queries on a canvas (left side)
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The work by Pau et al. [102] closely resembled our vision to approach this research problem.

However, there was no official code implementation available for testing/experimentation. We

developed our own version of the Sketch-DETR, which closely resembled the original work pro-

posed by Pau et al [102]. However, after conducting a series of extensive experiments, it became

evident that the object query conditioning technique as explained in Section 1.3.2, while intrigu-

ing, did not yield significant improvements in our specific context. Consequently, we remove the

decoder conditioning and refer to our adapted model as ”Sketch Canvas DETR”.

In the context of Sketch-Based Image Retrieval (SBIR) and Sketch-Guided Object Localiza-

tion (SGOL), another significant challenge that has been identified is the scarcity of data, which

poses a substantial obstacle for data-dependent cross-modal learning algorithms. Acquiring paired

photos and hand-drawn sketches is inherently difficult, limiting the availability of training data and

impeding the development of effective cross-modal models for SBIR and SGOL tasks. Further-

more, this data scarcity issue extends to other related tasks, such as object detection [24], where

the accuracy of the SBIR model plays a critical role in determining the accuracy of object detection

results.

To tackle these issues we propose a novel approach to restructure the existing Sketchy-COCO

dataset. We aim to break down scene-level data containing multiple sketch instances into individ-

ual images, each featuring only a single sketch instance. To achieve this, we employ a two-fold

strategy:

1. Filtering Background Classes: We begin by filtering out background classes from the

dataset. This step helps in focusing solely on foreground instances, which are the primary objects

of interest.

2. Single Instance Images: Instead of utilizing images with multiple instances, we ensure

that each image contains only a single sketch instance. For instance, if an original image contains

two sketch object instances, we create two separate images, each featuring a single instance. This

approach serves a dual purpose—it acts as an advanced data augmentation technique and also

enhances the model’s generalization capabilities.

1.6 Achievements

• Ran baseline experiments for FG-SBIR to check the validity of synthetic sketches
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• Successfully modified the DETR code base for sketch guided object detection

• Studied the effect of operators like addition and concatenation when fusing features from

sketches and paired images for the pipeline mentioned above

• Developed a cross attention block using single transformer encoder which gave superior

results compared to self-attention based methods.

1.7 Overview of Interim Report

This report is structured in the following format:

• Background Theory: We go through basic concepts required to get acquainted with topics

related to sketch based image retrieval and object detection

• Literature Review: We briefly go through the existing literature related to the topic of sketch-

base image retrieval

• Dataset Exploration: We describe datasets relevant to sketch based applications

• Synthetic Sketch Generation: We go through sketch generation algorithms from natural

images. We briefly introduce the readers to the different SOTA methods

• Sketch Canvas DETR: We introduce our custom version of Sketch-DETR and evaluate it’s

performance on multi-instance object detection

• Future work: We discuss the plan for further improvements and experiments
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2 BACKGROUND THEORY

We introduce the readers to some of the background concepts which is required to appreciate the

vast field of sketch-based applications. Though numerous papers have been published we describe

a select few of the algorithms and papers which will help in understanding the crux of the thesis.

2.1 Vanilla Transformer

The Vanilla Transformer employs an encoder-decoder structure. This architecture processes to-

kenized input data. Both the encoder and decoder components consist of stacked Transformer

layers[135] or blocks, as illustrated in Figure 2.1 .

Figure 2.1: Transformer Architecture

Each block comprises two key sub-layers:

1. A multi-head self-attention (MHSA) layer

2. A position-wise fully-connected feed-forward network (FFN) layer.
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To facilitate the backpropagation of gradients during training, both the MHSA and FFN layers

incorporate a Residual Connection mechanism, denoted as x ← f(x) + x, followed by normal-

ization. This ensures stable training and helps avoid the vanishing gradient problem. Thus, given

an input tensor Z, the output of the MHSA and FFN sub-layers [91] can be expressed as follows:

Z ← N(sublayer(Z) + Z)

Here, sublayer(·) represents the mapping implemented by the sub-layer itself, and N(·) de-

notes normalization, which can take various forms such as Batch Normalization (BN) or Layer

Normalization (LN) [148].

2.1.1 Discussion on Normalization

An unresolved issue in Transformer architecture pertains to the order of normalization layers

[144], specifically post-normalization versus pre-normalization. The original Vanilla Transformer

adopts post-normalization for each MHSA and FFN sub-layer. Resolving this issue can potentially

lead to improvements in the efficiency and performance of Transformer-based models.

2.2 Input Tokenization

The Vanilla Transformer, originally designed for machine translation, utilizes tokenized sequences

as input. This design was initially intended for machine translation, where source and target

sentences are segmented into tokens. Each token can be seen as a node in a graph, allowing the

Transformer to model relationships between words effectively. This approach is highly flexible

and can be applied to different modalities, making it suitable for a wide range of tasks beyond

translation [91].

2.2.1 Special/Customized Tokens

Transformers introduce special/customized tokens as placeholders in token sequences. These

tokens serve various semantic purposes and enhance the model’s capability. For example, the

[MASK] token is used in Masked Language Modeling [27], and the [CLASS] token aids in clas-

sification tasks [35]. These specialized tokens contribute to the Transformer’s adaptability, as they

allow it to handle diverse tasks with tailored functionalities. [132]
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2.2.2 Position Embedding

To retain positional information, position embeddings are added to the token embeddings [27].

The Vanilla Transformer employs sine and cosine functions to generate position embeddings

[135], preserving the order of tokens in a sequence. While the specific implementation of po-

sition embeddings may vary across different Transformer variants, this feature remains essential

for maintaining the sequential context of input data.

2.2.3 Advantages of Input Tokenization

Input tokenization offers several advantages:

1. Universality and Flexibility: Modalities, such as text and images, have distinct characteris-

tics and structures. For instance, sentences exhibit sequential patterns suitable for Recurrent

Neural Networks (RNNs), while images align with grid matrices, making Convolutional

Neural Networks (CNNs) a natural choice. Tokenization allows Transformers to process

these modalities universally by representing them as irregular sparse structures. This means

that even the Vanilla Transformer can encode multimodal inputs effectively through tech-

niques like concatenation and weighted summation (we have carried out extensive experi-

ments based on such fusion techniques in [refer to exeriments section]), without requiring

extensive multimodal modifications.

2. Flexible Information Organization: Input tokenization provides flexibility in organizing

input information. The Vanilla Transformer introduces temporal information by incorporat-

ing position embeddings, ensuring that the model understands the order of tokens in a se-

quence. This flexibility extends to various tasks. For instance, when applying Transformers

to tasks like freehand sketch drawing [146], each input token can encompass diverse draw-

ing stroke patterns, including stroke coordinates, stroke ordering, and pen state (start/end).

This adaptability allows Transformers to excel in tasks with heterogeneous data.

3. Task-Specific Customization: Input tokenization is compatible with task-specific cus-

tomized tokens. These tokens are tailored to meet specific task requirements and semantics.

For example as stated bfore, the [MASK] token is used for Masked Language Modeling,

where the model predicts masked words within a sentence. Similarly, the [CLASS] token

is employed in classification tasks to distinguish between different classes or categories.

10



Deep Wilson Aricatt, MSc dissertation

This customization ensures that Transformers can be applied to a wide array of tasks while

maintaining their effectiveness and efficiency.

2.3 Self-Attention

The core component of Vanilla Transformer is the Self-Attention (SA) operation, also termed

”Scaled Dot-Product Attention”. Let X = [x1, x2, . . .] ∈ RN×d be an input sequence of N

elements/tokens, and an optional preprocessing step involves positional encoding, either by point-

wise summation Z ← X⊕PositionEmbedding or concatenation Z ← concat(X,PositionEmbedding).

The Self-Attention (SA) operation proceeds as follows: After preprocessing, the embedding

Z undergoes three projection matrices WQ ∈ Rd×dq , WK ∈ Rd×dk , and WV ∈ Rd×dv , where

dq = dk, to generate three embeddings: Q (Query), K (Key), and V (Value):

Q = ZWQ, K = ZWK , V = ZWV .

The output of the self-attention operation is defined as:

Z = SA(Q,K, V ) = Softmax

(
QKT√

dq

)
V.

Here, Softmax computes the softmax scores for the dot products of Q and K, scaled by
√
dq,

and then uses these scores to weight the V embeddings to produce the final output Z [91].

2.4 Masked Self-Attention (MSA)

In practice, modifications to the self-attention mechanism are often necessary to aid the Trans-

former decoder in learning contextual dependencies and to prevent positions from attending to

subsequent positions. This modification is achieved by introducing a masking matrix, resulting in

the modified Self-Attention (MSA) operation:

Z = MSA(Q,K, V ) = Softmax

(
QKT√
dq ·M

)
V,
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where M is a masking matrix. For example, in models like GPT [93] , an upper triangular

mask is applied to enable look-ahead attention, ensuring that each token can only attend to previous

tokens and not future ones.

2.5 Multi-Head Self-Attention

In practice, it’s common to stack multiple self-attention sub-layers in parallel, and their concate-

nated outputs are combined through a projection matrix W to create a structure known as Multi-

Head Self-Attention [135]:

Z = MHSA(Q,K, V ) = concat(Z1, . . . , ZH)W,

where each head Zh = SA(Qh,Kh, Vh) for h ∈ [1, H], and W represents a linear projection

matrix. The concept behind Multi-Head Self-Attention (MHSA) is a form of ensemble learning.

MHSA allows the model to jointly focus on information from multiple sub-spaces of representa-

tion, enhancing its ability to capture complex relationships.

2.6 Feed-Forward Network

The output of the multi-head attention sub-layer is processed by a position-wise Feed-Forward

Network (FFN) composed of successive linear layers with a non-linear activation function. For

example, a two-layer FFN can be represented as:

FFN(Z) = σ(ZW1 + b1)W2 + b2,

where W1, b1, W2, and b2 represent the weights and biases of the two linear transformations,

and σ(·) is a non-linear activation function, such as ReLU(·) [171] or GELU(·) [172]. In some

Transformer literature, the term Multi-Layer Perceptron (MLP) is also used to refer to FFN.

2.7 Vision Transformer

The Vision Transformer (ViT) [35] introduces an image-specific input pipeline, where the input

image needs to be divided into fixed-size patches (e.g., 16x16, 32x32). After linear embedding

and the addition of position embeddings, these patch-wise sequences are encoded by a standard

Transformer encoder.
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Given an image X ∈ RH×W×C (where H represents height, W width, and C channels), ViT

reshapes X into a sequence of flattened 2D patches: xp ∈ RN×(P 2·C), where (P ×P ) is the patch

resolution, and N = H·W
P 2 .

To enable classification, a common approach is to prepend an additional learnable embedding

called the ”classification token” [CLASS] to the sequence of embedded patches [91] :

Z ← concat([CLASS], XW ),

where W represents the projection.

2.8 Multimodal Learning

In various computer vision tasks, different modalities, such as natural language, image or audio

signals, often contain complementary information while also overlapping in their representation

of a common concept. The field of multimodal learning aims to leverage this complementary

information to enhance the performance of these tasks. One crucial aspect of multimodal learning

is the exploration of efficient methods for fusing information from multiple modalities.

2.8.1 Existing Fusion Methods

Simple fusion methods like concatenation and element-wise summation have been extensively

studied in previous research [91]. These methods involve simply combining the features or repre-

sentations from different modalities.

2.8.2 Tensor Fusion

To facilitate more efficient cross-modality interaction, Zadeh et al. introduced a tensor fusion

mechanism [156]. This approach seeks to capture the relationships between modalities by working

with tensors, allowing for richer representations of multimodal data.

2.8.3 Low-Rank Fusion

In response to the computational challenges associated with tensor fusion, an efficient low-rank

fusion technique has been proposed [83]. This method is designed to address the exponential

growth in dimensionality that occurs when applying tensor fusion to multimodal data.
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2.9 Combining Modalities in Multimodal Deep Learning (Multimodal Fusion)

In the realm of multimodal Transformers, cross-modal interactions, such as fusion and alignment,

are primarily processed through self-attention or cross-attention mechanisms and their variations.

In this section, we review various multimodal modeling practices within Transformers, empha-

sizing mainly self-attention designs [91]. We focus on 6 types of fusion techniques (see Figure

2.2):

1. Early Summation

2. Early Concatenation

3. Hierarchical Attention (Multi-Stream to One-Stream)

4. Hierarchical Attention (One-Stream to Multi-Stream)

5. Cross-Attention

6. Cross-Attention to Concatenation

Figure 2.2: Transformer-based cross-modal interactions: (a) Early Summation, (b) Early Con-
catenation, (c) Hierarchical Attention (multi-stream to one-stream), (d) Hierarchical Attention
(one-stream to multi-stream), (e) Cross-Attention, and (f) Cross-Attention to Concatenation. “Q”:
Query embedding; “K”: Key embedding; “V”: Value embedding. “TL”: Transformer Layer.

Given inputs XA and XB from two arbitrary modalities, ZA and ZB represent their respec-

tive token embeddings. Let Z denote the token embedding sequence produced as a result of the

multimodal interactions. The function Tf(·) indicates the processing performed by Transformer

layers/blocks.
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2.9.1 Early Summation

In this approach (see Figure 2.3), token embeddings from different modalities are linearly com-

bined with weights and then processed by Transformer layers.

Z = Tf(αZ(A) + βZ(B)) (2.1)

Q K V 

TL 

Figure 2.3: Early Summation

2.9.2 Early Concatenation

Token embedding sequences from different modalities are concatenated into a single sequence and

fed into Transformer layers (see Figure 2.4).

Z = Tf(C(Z(A), Z(B))) (2.2)

Q K V 

TL 

Figure 2.4: Early Concatenation
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2.9.3 Hierarchical Attention (Multi-Stream to One-Stream)

Multimodal inputs are processed independently by separate Transformer streams, and their outputs

are concatenated and further fused by another Transformer (see Figure 2.5).

Z = Tf3(C(Tf1(Z(A)),Tf2(Z(B)))) (2.3)

TL 

Q K V 

TL 

Q K V 

Q K V 

TL 

Figure 2.5: Hierarchical Attention (Multi-Stream to One-Stream)

2.9.4 Hierarchical Attention (One-Stream to Multi-Stream)

This approach involves encoding concatenated multimodal inputs using a shared single-stream

Transformer, followed by separate Transformer streams for each modality (see Figure 2.6).

C(Z(A), Z(B))← Tf1(C(Z(A), Z(B))) (2.4)

Z(A)← Tf2(Z(A)) (2.5)

Z(B)← Tf3(Z(B)) (2.6)
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Q K V 

TL 

TL 

Q K V 

TL 

Q K V 

Figure 2.6: Hierarchical Attention (One-Stream to Multi-Stream)

2.9.5 Cross-Attention

Cross-attention is applied to two-stream Transformers, where Query (Q) embeddings are ex-

changed between modalities, allowing cross-modal interactions (see Figure 2.7).

Z(A)← MHSA(Q(B),K(A), V (A)) (2.7)

Z(B)← MHSA(Q(A),K(B), V (B)) (2.8)

TL 

V K Q 

TL 

Q K V 

Figure 2.7: Cross-Attention
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2.9.6 Cross-Attention to Concatenation

Two-stream cross-attention outputs are concatenated and further processed by another Trans-

former layer to capture global cross-modal context (see Figure 2.8).

Z(A)← MHSA(Q(B),K(A), V (A)) (2.9)

Z(B)← MHSA(Q(A),K(B), V (B)) (2.10)

TL 

V K Q 

TL 

Q K V 

Q K V 

TL 

Figure 2.8: Cross-Attention to Concatenation

2.9.7 Discussion on complexity

Hierarchical Attention and Cross-Attention mechanisms can be superior to simpler techniques

like addition and concatenation. However, they come at a cost of larger memory footprints since

multiple transformer encoders (which in turn have multiple transformer attention layers) would be

employed.

2.10 Sketch-Based Image Retrieval (SBIR) vs Fine-Grained Sketch-Based Image

Retrieval (FG-SBIR)

SBIR aims to retrieve natural images that match a given hand-drawn sketch, regardless of the level

of detail or realism of the sketch. In other words, SBIR does not focus on fine-grained visual
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differences between objects but only on the class label. In such cases, text is often a simpler form

of input when only category-level retrieval is required [24]

FG-SBIR, on the other hand, is a more challenging task that aims to retrieve natural images

that match a given hand-drawn sketch with fine-grained details, such as specific texture, color, or

shape features of an object. FG-SBIR requires more detailed sketches and a deeper understanding

of the visual characteristics of objects [6].

2.11 CLIP (Contrastive Language-Image Pre-Training)

CLIP (Contrastive Language-Image Pre-Training) is a neural network model developed by Ope-

nAI that can learn visual concepts through supervised learning from natural language. It can

perform tasks such as image classification, object detection, and image retrieval using only text

descriptions as supervision [94]

The model is trained on a massive dataset of 400M image-text pairs, where it learns to map nat-

ural language descriptions to corresponding images by maximizing the similarity between them.

This is achieved by using a contrastive loss function that encourages the model to correctly asso-

ciate a given text description with its corresponding image, while at the same time minimizing the

similarity between the image and other irrelevant text descriptions.

The CLIP model has achieved state-of-the-art results on a variety of visual tasks, including

image classification and natural language-based image retrieval, without the need for task-specific

fine-tuning.

2.11.1 Prompt Learning

Prompt learning [24] is a process in which the prompt template and the associated class-specific

weights used in vision-language models like CLIP and ALIGN are learned directly from data,

rather than being manually designed or pre-specified.

A prompt template is a predefined text pattern that is used as input to a text encoder in such

models. The template includes special tokens that are replaced with specific information, such as

the name of a class, to generate class-specific weights for classification.
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For example, a prompt template for classifying images of different fruits could be ”a photo of

a fruit, a type of food”. The ”fruit” token is a placeholder that is replaced with the name of the

actual fruit, such as ”apple” or ”banana”, to generate class-specific weights for classification.

Prompt templates can be customized for different image classification tasks and allow for

more flexible and efficient training of vision-language models. They enable the same text encoder

and classification weights to be used across different classes and tasks, by simply swapping out the

specific information in the template. This approach is particularly useful for open-set classification

tasks, where the model needs to be able to recognize new classes that were not included in the

training data.

2.11.2 Need for CLIP

ResNet and other similar image classification models are excellent at top-one or top-five classifi-

cation accuracy, but they have limitations. For example, they may fail in robustness tests or when

presented with adversarial examples or slight differences in image distribution. In contrast, CLIP

uses a contrastive learning approach that unifies images and text and turns image classification

into a text similarity problem. CLIP performs much better on different kinds of datasets, making

it more versatile than ResNet. Additionally, building large labeled datasets like ImageNet is ex-

pensive and time-consuming, whereas CLIP can learn representations from unlabeled data using

contrastive pre-training. Furthermore, ResNet is limited to the 1000 ImageNet categories, while

CLIP can generalize to new categories using zero-shot learning.

2.12 Object detection

Object detection techniques can be classified into different types based on their approaches and

methodologies. The primary distinction lies in their fundamental substrate, i.e., the underlying

layer upon which predictions are made. The classic approach and the newer approach as shown

by DETR offer two distinct perspectives on tackling the problem of object detection.

2.12.1 Classical Approach

1. Classical Approach:

This approach treats object detection as a machine learning problem and models it as a

classification task. It involves several interconnected steps:
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• Quantization and Regression: To address the challenge of too many boxes for clas-

sification, a proxy problem is introduced. Boxes are quantized into a finite set of

representative boxes, and a model is trained to predict the quantization error. This

introduces both classification and regression tasks.

• Label Assignment Heuristics: Since quantized boxes do not exactly match ground

truth, labeling heuristics based on criteria like intersection over union (IoU) thresholds

are used to determine foreground and background boxes.

• Redundancy Removal: The independent predictions for each box can lead to redun-

dant detections. Non-maximum suppression (NMS) is applied to remove redundant

detections by selecting boxes with the highest confidence and suppressing overlapping

detections.

• Imbalanced Data Handling: Handling imbalanced data is essential, as foreground

boxes are significantly fewer than background boxes. Techniques like focal loss, cas-

cading classifiers, and hard negative mining are employed to mitigate this imbalance.

2.12.2 Supervised object detection

Object detection is the task of identifying and classifying objects in an image. There are two

main categories of object localization methods: proposal-free and proposal-based. Proposal-free

methods are faster during inference but often have lower performance compared to proposal-based

methods. Proposal-based methods first generate object proposals and then refine them by classi-

fying them into object categories. Previous methods used selective search to generate proposals,

but the two stages were trained independently. Faster R-CNN introduced a region proposal net-

work (RPN) that made the detection pipeline end-to-end trainable. Though many other algorithms

have been proposed since, Faster-RCNN has been robust in accuracy and is still used today in

research and production. Despite the introduction of various other object detection algorithms,

Faster-RCNN has remained robust in terms of accuracy and continues to be used in both research

and production.

2.12.2.1 Faster R-CNN Object Detection

Faster R-CNN is a popular object detection framework that consists of two main components:

a Region Proposal Network (RPN) and a Fast R-CNN detector. The RPN generates proposals,

which are regions of interest (RoIs) that may contain objects, while the Fast R-CNN detector takes

the RoIs as input and performs object classification and bounding box regression.
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The RPN is implemented as a fully convolutional network that shares convolutional layers

with the Fast R-CNN detector. It takes an image as input and outputs a set of object proposals,

each represented by a bounding box and an objectness score. The RPN uses an anchor-based

approach, where a set of anchor boxes are defined at each spatial location, and the RPN predicts

offsets and scores for each anchor box. The anchor boxes have different aspect ratios and scales

to handle objects of different sizes and shapes.

The output of the RPN is a set of proposals that are passed to the Fast R-CNN detector. The

Fast R-CNN detector takes each proposal as input and performs feature extraction using a region

of interest pooling layer. The features are then fed into a series of fully connected layers for

classification and regression. The final output of the detector is a set of class probabilities and

bounding box offsets for each proposal.

The loss function used to train the Faster R-CNN network is a combination of the RPN loss

and the Fast R-CNN loss. The RPN loss consists of a classification loss and a bounding box

regression loss, while the Fast R-CNN loss consists of a classification loss and a bounding box

regression loss. The total loss is a weighted sum of the two losses.

LFasterR−CNN = LRPN + LFastR−CNN

where LRPN and LFastR−CNN are the RPN loss and Fast R-CNN loss, respectively.

2.12.3 Weakly supervised object detection

Weakly supervised object detection refers to a type of computer vision task where the goal is to

detect objects in an image using only partial or incomplete supervision, as opposed to fully su-

pervised methods that require precise bounding box annotations for every object in every image.

In weakly supervised object detection, the training data may only include image-level labels, in-

dicating the presence or absence of an object in an image, or may include noisy or incomplete

bounding box annotations [115].

There are different approaches to weakly supervised object detection, but one common strategy

is to use a combination of localization and classification methods to identify the location and

category of objects in an image. For example, some methods may use saliency maps or attention
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mechanisms to highlight regions of an image that are likely to contain an object, and then apply

classification models to these regions to identify the object category.

2.12.4 Extremely weakly supervised object detection (EWSOD)

Recently, Pinaki et al [24] introduced extremely weakly supervised object detection (EWSOD)

that does away with the need for any supervised labels at all .

Figure 2.9: Extremely weakly supervised object detection

EWSOD is a technique for training object detectors with minimal annotation requirements.

Instead of using bounding box annotations, it relies on image-level class labels, which indicate

whether objects of certain classes are present in the image or not. To avoid the use of bounding

box annotations, EWSOD employs Pre-trained Region Proposal Network (RPN), Heuristic-based

selective search or Edge boxes to generate box proposals. For each proposed region ri, patch

features fr are extracted, and these features are split into a classification head xc = ϕcls(fr) ∈

RR×(|C|+1) and a detection head xd = ϕdet(fr) ∈ RR×(|C|+1). The classification head ϕcls assigns

scores to individual proposals for each of the C classes and a background class (represented as

|C|+ 1) using softmax as follows:

σcls(x
c
i,j) =

ex
c
i,j∑|C|+1

k=1 ex
c
i,k

(2.11)

The detection head ϕdet measures the contribution of each patch i to being classified into class

j (including the background class) using softmax across all R regions:
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σdet(x
d
i,j) =

ex
d
i,j∑R

k=1 e
xd
k,j

(2.12)

Training is performed using image-level labels Y = [y0, y1, . . . , y|C|]
T ∈ R(|C|+1)×1, where

yc = 1 or 0, indicating whether an instance of class c is present in the image or not. The combined

score ω0 is computed as an element-wise product of the class scores σcls and the patch scores σdet,

and it is used to estimate the probability of instances from class c being present in the image:

ŷc =
R∑
i=1

ω0
i,c (2.13)

Training is conducted using multi-class cross-entropy loss:

Lws = −
|C|+1∑
c=1

(yc log ŷc + (1− yc) log(1− ŷc)) (2.14)

EWSOD differs from standard Supervised Object Detection (SOD) in that it only uses image-

level class labels for training, without the use of bounding box annotations. To refine the proposals

iteratively, an iterative refinement classifier ωk = ϕ∗cls(fr) is introduced. This classifier is super-

vised using pseudo scores l(k−1) from the (k − 1)th iteration. The steps for pseudo score assign-

ment involve selecting the patches with the highest scores for each class, assigning regions with

high overlap to the corresponding class, and assigning regions with low overlap to the background

class.

The refinement loss is defined as:

Lkref =
1

R

R∑
i=1

|C|∑
c=1

ω
(k−1)
i,j l

(k−1)
i,j logωk

i,j (2.15)

Both EWSOD and SOD are constrained to detect objects belonging to a predefined set of C

classes.
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2.12.5 DETR Approach

DETR represents a newer perspective on object detection, focusing on direct set-level prediction

and interaction. It differentiates itself from the classic approach in several ways:

1. Fundamental Substrate: DETR employs a set of learned object queries, which are not

constrained by prior geometric meaning. These queries interact with image features through

a transformer decoder.

2. Direct Set-Level Prediction: Instead of predicting classifications and regressions for quan-

tized boxes, DETR predicts categories and bounding boxes directly for each object query.

This eliminates the need for label assignment heuristics and quantization error prediction.

3. Non-Maximum Suppression Integration: The transformer decoder in DETR allows for

set-level interactions, enabling learned non-maximum suppression directly in the model.

4. Permutation Invariance: The transformer used in DETR operates on permutations, mak-

ing it invariant to the order of object queries, enhancing its ability to handle set-level inter-

actions.

2.13 Evaluation Metric - Average Precision at IoU 0.5 (AP 0.5)

We use a metric called as Average Precision at IoU 0.5 (AP 0.5)

AP 0.5 is a common evaluation metric used in object detection and image segmentation tasks

to measure the accuracy of a model’s predictions. It specifically assesses the precision of object

localization.

• Average Precision (AP): Average Precision is a metric used to evaluate the precision-recall

curve of a model. It measures how well a model can identify objects or regions of interest

within an image while considering different confidence thresholds. The precision-recall

curve illustrates the trade-off between precision (the ratio of true positives to all positive

predictions) and recall (the ratio of true positives to all actual positives) at various confidence

thresholds.

• IoU (Intersection over Union): IoU is a measure of the overlap between the predicted

bounding box (or region) and the ground truth bounding box. It is calculated as the ratio of
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the area of overlap between the predicted and ground truth boxes to the area of their union.

In the context of AP 0.5, IoU is set to 0.5, which means that the predicted bounding box is

considered correct if it has an overlap of at least 50% with the ground truth bounding box.

So, when we refer to Average Precision at IoU 0.5 (AP 0.5), it means that we are computing

the average precision of a model’s object localization predictions while using a minimum IoU

threshold of 0.5 (50% overlap) to determine whether a predicted bounding box is correct. AP 0.5

provides a measure of how effectively a model can accurately localize objects in an image with a

relatively lenient criterion for correctness.
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3 LITERATURE REVIEW

3.1 Sketch-guided object localization

Sketch-guided localization can be used to detect and localize objects in an image by providing a

sketch query. This task is distinctively different from the traditional sketch-based image retrieval

task where the gallery set often contains images with only one object [130]. Despite its potential

significance, sketch-guided localization has received limited research attention to date. Existing

work makes use of a supervised learning approach using cross-modal attention from deep learning

models trained on natural images and sketches to generate an attention matrix that can guide a

region proposal network (RPN) to localize objects [130]. However, this work employs a very

complicated method of cross modal attention described in next section.

Cross-modal Attention for Query-guided Object Proposal Generation (see Figure 3.1) is

an attention module that leverages information from sketch queries, in addition to the image data.

The core idea is to establish a connection between the query or sketch and the image, allowing

the system to focus on regions in the image that are most relevant to the given query. This is

achieved through the use of attention mechanisms, which assign different levels of importance to

different parts of the image based on their similarity or relevance to the query.

The cross-modal attention can effectively propose objects that are low in resolution, partially

obscured, or hidden within a cluttered scene. This is achieved by taking into account both the

content of the image and the additional information provided by the query or sketch.

Figure 3.1: Cross-modal Attention for Query-guided Object Proposal Generation
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3.2 Sketch-DETR: Enhancing Object Localization with Sketch Conditioning

Sketch-DETR [102] introduces an approach to object localization by leveraging sketches as con-

ditioning cues within the DETR (DEtection TRansformer) architecture. Two distinct conditioning

methods are explored (see Figure 3.2):

3.2.1 Object Query Conditioning

In the first method, sketch features are incorporated at the object query level. This involves feeding

sketch features, obtained through a CNN backbone denoted as ζ(·), into the transformer decoder

alongside query objects. The primary motivation behind this scheme is to provide query objects

with both spatial information and content details. This is achieved through a simple linear layer

that concatenates query objects and sketch features, resulting in a new tensor q̃i of shape d dimen-

sions.

3.2.2 Encoder Concatenation Conditioning

The second conditioning method involves combining features obtained by the DETR CNN back-

bone (f ∈ Rd×H×W ) with sketch features (fs ∈ Rd) extracted by the sketch CNN backbone. This

concatenation is performed, with fs repeated to match the size of f . Subsequently, a 1× 1 convo-

lution reduces the dimensions to d×H ×W . This approach aims to enhance features in regions

highly correlated with the provided sketch. Both conditioning methods are depicted in Figure 2.

Figure 3.2: Sketch DETR

3.2.3 Learning Objectives

The learning objectives follow a scheme proposed by Carion et al. [16], tailored to the binary

case of object presence or absence. Proper matching between the set of N predicted objects and

the ground-truth set is crucial. A bipartite matching minimizes the matching cost, considering
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predicted boxes and objectness scores. The Hungarian loss is then computed based on assigned

pairs. It incorporates class probabilities and a combination of Generalized Intersection over Union

(IoU) and L1 loss for predicted boxes.

Optional losses for instance segmentation mask prediction include the Focal Loss to address

data imbalance and the DICE/F-1 loss, optimizing the Dice coefficient for predicted masks.

3.3 Synthetic sketch generation techniques

3.3.1 CLIPascene

CLIPascene [137] is a method proposed by Yael Vinker et al. for generating sketches from scene

images with different levels of abstraction. The method employs two types of abstraction: fidelity

and visual simplicity, and allows users to select the desired level of abstraction based on their

personal preferences. The approach involves training two multi-layer perceptron (MLP) networks

to learn stroke placement and removal while preserving the recognizability and semantics of the

sketch. The proposed method is capable of generating sketches of complex scenes, including those

with complex backgrounds and subjects. The paper provides a project page for further exploration

and discusses the application of CLIPascene in computer vision and graphics.

3.3.2 Learning to generate line drawings that convey geometry and semantics

Caroline Chan et al [18] presents an unpaired method for creating line drawings from photographs.

Current methods often rely on high quality paired datasets to generate line drawings. However,

these datasets often have limitations due to the subjects of the drawings belonging to a specific

domain, or in the amount of data collected. Although recent work in unsupervised image-to-image

translation has shown much progress, the latest methods still struggle to generate compelling line

drawings. The authors observe that line drawings are encodings of scene information and seek to

convey 3D shape and semantic meaning. They build these observations into a set of objectives and

train an image translation to map photographs into line drawings. A geometry loss which predicts

depth information from the image features of a line drawing, and a semantic loss which matches

the CLIP features of a line drawing with its corresponding photograph is used. Few examples see

Figure 3.7
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Figure 3.7: Caroline Sketch Samples

3.3.3 CLIPasso

CLIPasso [136] is a method for generating object sketches with different levels of abstraction,

guided by geometric and semantic simplifications. The method is based on CLIP (Contrastive-

Language-Image-Pretraining), which has the ability to distill semantic concepts from sketches

and images. CLIPasso defines a sketch as a set of Bézier curves and uses a differentiable ras-

terizer to optimize the parameters of the curves directly with respect to a CLIP-based perceptual

loss. The degree of abstraction is controlled by varying the number of strokes. The generated

sketches demonstrate multiple levels of abstraction while maintaining recognizability, underlying

structure, and essential visual components of the subject drawn. CLIPasso leverages the semantic

understanding of CLIP to generate sketches.

The sketch generation process at test time is shown in Figure 3.12.These images were gener-

ated with a stroke size of 25. As shown, the expressive power of CLIPasso is not that great when it

comes to recreating the complex floral designs. More number of strokes would be required which

would consume more time. It takes around 42 minutes to generate a single sketch.
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Figure 3.12: Clipasso sketches generated at iterations 0, 240, 600 and 1000
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4 DATASET EXPLORATION

4.1 Sketchy:

The Sketchy database [111] was presented as the first collection of sketch-photo pairs. Crowd

workers were asked to sketch photographic objects from 125 categories resulting in 75,471 sketches

of 12,500 objects. Fine-grained associations between photos and sketches were established using

this database to train cross-domain convolutional networks. The learned representation outper-

formed hand-crafted and deep features trained for sketch or photo classification. The Sketchy

database was used as a benchmark for fine-grained retrieval. An important point to be noted is

that the participants were not allowed to trace photos, but instead, photos were revealed and then

hidden, requiring them to sketch from memory. This approach is similar to the way a user of

a sketch-based image retrieval system would draw based on a mental image of a desired object.

Hence, this dataset can be used to simulate real-life image retrieval scenarios.

4.2 QuickDraw-Extended Dataset:

The QuickDraw-Extended dataset [31] was created using the Google Quick, Draw! dataset, which

consists of 50 million drawings across 345 categories. The Quick, Draw! game asks users to

draw sketches of a given category while the computer tries to classify them. A subset of 110 cat-

egories was selected, with 80 for training and 30 for testing. Categories such as circle or zigzag

were discarded as they cannot be used for appropriate SBIR. Images were extracted from Flickr

and tagged with the corresponding label to serve as the retrieval gallery. Manual filtering was

performed to remove outliers. Additionally, a test split was provided to ensure that test classes

were not present in ImageNet when using pre-trained models. The final dataset contains 330,000

sketches and 204,000 photos and is designed for large-scale Zero-Shot Sketch-Based Image Re-

trieval (ZS-SBIR). The dataset addresses the large domain gap between non-expert drawers and

photos that is not considered in previous benchmarks and is expected to provide better insights

into the real performance of ZS-SBIR in a real scenario [131]

4.3 SketchyCOCO Dataset

The SketchyCOCO dataset is a comprehensive resource introduced in the context of the CVPR

paper ”SketchyCOCO: Image Generation from Freehand Scene Sketches.” It is primarily focused
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on the generation of entire scenes from freehand sketches, with an emphasis on complex and

complete scene-level image synthesis.

4.3.1 Organization of dataset

• Object-level Data: It contains triplets of foreground sketches, foreground images, and fore-

ground edge maps covering 14 different object classes. It also includes pairs of background

sketches and background images covering 3 classes.

• Scene-level Data: This section comprises pairs of foreground images combined with back-

ground sketches to create complete scene images. Additionally, there are pairs of scene

sketches and scene images, along with segmentation ground truth data for scene sketches.

The dataset has been augmented with additional images and corresponding data for specific

object classes.

SketchyCOCO and the Sketchy database differ in their primary purposes. SketchyCOCO is

tailored for scene-level image generation, while the Sketchy database is geared towards object

recognition and retrieval tasks involving sketches.
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5 METHODOLOGY

5.1 Problem formulation

Consider two sets, denoted as P and S, representing photos and sketches of the same size respec-

tively. Each pair of a photo and its corresponding sketch canvas share a common characteristic:

both contain a set of n bounding boxes, each representing an individual object of interest belong-

ing to C categories. The objects within the sketch canvas and photo are spatially aligned and have

a one to one correspondence thought there maybe a difference in their sizes.

Mathematically, let P = {pi}Ni=1 represent the set of N photos, and S = {si}Ni=1 denote the

set of corresponding sketches. For each sketch instance si within the sketch canvas containing

total n instances there exists a corresponding bounding box bi within the photo {bj}nj=1

At inference, the goal is to detect bounding boxes for the n sketch instances present in the

query canvas.

5.2 DETR

Building upon the concept of DETR (DEtection TRansformer) introduced by Carion et al. [16],

we present a variant called Sketch-Guided-DETR (SG-DETR) to address the challenge of Sketch-

Guided Object Localization (SGOL) [102].

The DETR architecture [16] comprises several key components, including a Convolutional

Neural Network (CNN) backbone, an encoder-decoder transformer, and feed-forward networks

(FFNs) that contribute to generating final predictions. A unique aspect of DETR’s design is the

application of a set-based bipartite matching loss, which enforces distinct predictions for each

ground-truth bounding box. DETR’s remarkable performance in comparison to other object de-

tectors can be attributed to its inherent capability to reason about object relationships, facilitated

by the self-attention mechanism embedded in the transformer architecture.

5.3 Sketch Canvas DETR (SC-DETR)

Our model referred to as Sketch Canvas DETR (SC-DETR) (see Figure 5.1) is an extension of

the DETR framework [16], incorporating specific modifications tailored to address the task of
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detecting objects with spatial alignment to sketch queries drawn on a canvas. The following mod-

ifications have been implemented:

• The DETR module is extended to accommodate two distinct modalities: photographs and

sketches. Each modality undergoes processing through a ResNet-50 feature extractor. The

output representation derived from the final layer of the feature extractor is then fed into the

core DETR module.

• In place of the original encoder in the DETR architecture, a cross-attention encoder block is

introduced. This encoder block operates independently on each modality, with the hidden

representation in corresponding encoder layers being compared with the original sketch em-

bedding, allowing them to be processed separately and enabling more effective integration

of the spatial information inherent to sketch queries.

• Class labels are converted to only 2 classes background and no background. This simple

technique helps in achieving better generalization and can support unseen classes at infer-

ence.

We begin by extracting features from the input images and sketches. The image features have

a dimension of batch size×3×height×width, while sketch features are of size batch size×1×

height × width. We utilize a ResNet-based architecture to effectively extract image and sketch

features. This results in features of dimensions batch size × 512 × fm height × fm width,

where fm denotes the feature map.

5.3.1 Fusion Strategies

Depending on the fusion strategy chosen, the feature dimensions change accordingly:

• Elementwise Addition: Features remain batch size× 512× fm height× fm width.

• Concatenation: Features become batch size × 1024 × fm height × fm width as the

channel dimension doubles.

• Cross-Attention with single encoder: Modalities are passed as is to the query, keys, and

values. In subsequent layers, the hidden representations are passed as keys and values

whereas the sketch features are passed as queries for every encoder layer.
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5.3.2 Input Projection

To prepare the features for the transformer decoder, we use an input projection method that adjusts

the dimensions to batch size × hidden dim × (fm height × fm width). This is achieved

through a 1× 1 convolutional layer.

5.3.3 Transformer Encoder

The transformed features are then fed into a transformer encoder consisting of six layers. These

encoder layers enhance the representation of the fused features.

5.3.4 Transformer Decoder

The output of the encoder is jointly fed to the transformer decoder, along with query embeddings.

Initially, the query embeddings are represented as tensor arrays filled with zeros, with a shape of

num queries × batch size × hidden dim. It is important to note that the first self-attention

mechanism within the decoder of the transformer does not serve any functional purpose in this

context. The reason for retaining it in the architecture, as observed in DETR codebase, is primarily

for maintaining consistency with the standard transformer architectures.

5.3.5 Final Outputs

Using the Hungarian matching algorithm, we obtain the final outputs, including bounding box

coordinates (x, y, w, h) with a shape of num queries× 4, and classification scores with a shape

of num queries× 1.
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Figure 5.1: Sketch Canvas DETR Architecture

5.4 Exploring FG-SBIR Using Synthetic Sketches

In the initial stage of our research, we investigated synthetic sketches as a promising solution to

address the data scarcity issues mentioned in Section 1.4.3. We conducted baseline experiments

for the Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) task using the ShoeV2 dataset. We

explored three major sketch generation algorithms: Clipasso [136], Vinker et al. [137], and Chan

et al. [18].

Considering factors such as ease of use and the time required to generate sketches, we opted

to proceed with the approach presented by Caroline et al. [18]. We combined synthetic sketches

with human-drawn sketches at various ratios and studied their impact on retrieval metrics. The

results of this study are presented in Figure 5.2, 5.3.

Figure 5.2: Top-1 Retrieval scores for FG-SBIR using various ratios of hand drawn and synthetic
sketches
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Figure 5.3: Top-10 Retrieval scores for FG-SBIR using various ratios of hand drawn and synthetic
sketches

We conclude that using a ratio of 50% hand-drawn sketches and 50% synthetic sketches gave

satisfactory results and reduces our dependency on collecting human drawn sketches for down-

stream sketch applications.

5.5 Dataset Preparation

In Sketch-Guided Object Localization (SGOL), data scarcity is a significant challenge for cross-

modal learning algorithms. Acquiring paired photos and hand-drawn sketches is inherently diffi-

cult, limiting training data availability for SBIR and SGOL.

To address these challenges, we propose restructuring the Sketchy-COCO dataset. Our ap-

proach involves two key steps:

1. Background Class Filtering: We filter out background classes, focusing on foreground

instances of interest.

2. Single Instance Images: Instead of using images with multiple instances, we create in-

dividual images, each featuring only one sketch instance (see Figure 5.4). This serves as both

advanced data augmentation and improves model generalization.
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Figure 5.4: Single Instance Images with human drawn sketches

3. Synthetic Sketches: As described in Section 5.4 we explore using synthetic sketches (see

Figure 5.5) in a 50:50 ratio with human-drawn sketches. However, this approach showed a slight

drop in performance for the task of object detection.
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Figure 5.5: Single Instance Images with synthetic sketches

5.6 Multi-modal Data Ingestion and feature extraction

We follow standard normalization techniques to pre-process our sketch and image inputs and pass

them through a feature extraction module, that can generate embeddings that can be ingested by

the transformer encoder.

ResNet-50 [47] is a convolutional neural network architecture highly cited for image-related

tasks. It contains residual blocks that mitigate the vanishing gradient problem, allowing for effec-

tive training of extremely deep networks.

Conventional approaches employ separate feature extractors for each modality. However, in

our investigation we found that this leads to larger memory footprint.
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In our work, we capitalize on ResNet-50 as a shared feature extractor for both sketch and

image inputs. As a result, overall memory footprint of the final model is also reduced.

We take the output embeddings from the 4th layer of the ResNet architecture to feed our trans-

former encoder (see Figure 5.4). In our studies we discover that the suitable feature representations

are obtained for both sketch and image using same backbone. The representations from different

layers are visually presented in Figure 5.7.

Figure 5.6: Outputs from intermediate layers of Resnet-50

41



Deep Wilson Aricatt, MSc dissertation

Figure 5.7: Data Ingestion pipeline and Data Flow architecture

5.7 Multi-modal Fusion Techniques

Once the input embeddings are generated, they need to be prepared or combined in a way that’s

suitable for the transformer module to ingest. The fusion process involves taking the individual

embeddings of different input elements and combining them to create a unified representation that

can be fed into the transformer. To combine the sketch and image modalities, we explore various

fusion methods, which are discussed in Section 2.9. Initially, we attempted a straightforward

approach by performing early element-wise addition of modalities. Surprisingly, this simple early

fusion method yielded an AP.5 score of 72.5%.

However, we questioned the validity of addition as a fusion method. Element-wise addition

merges the elements, but in a transformer encoder layer, self-attention is crucial as it pays attention

to individual tokens. In Element-wise addition, the final representation becomes a combined form.

Therefore, we decided to experiment with early concatenation, where both modalities’ content is

preserved as Concatenation simply stacks the features thereby allowing the self-attention block to

establish more meaningful connections.
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Implementing and training early concatenation proved more challenging. The input projection

block, responsible for projecting from the ResNet dimension to the transformer hidden dimension,

could not be used due to change in layer dimensions. Consequently, we couldn’t use pretrained

weights from a DETR model trained on the COCO dataset. However, we manually adapted the

code, keeping all weights from the DETR pre-trained model except for the input projection layer.

This necessitated more training epochs, but the result was a significant increase in the AP.5 score,

reaching 82.1%.

5.7.1 Single Encoder Cross Attention Block

We explored other fusion methods like Hierarchical Attention, but they required multiple en-

coders with multiple layers, which introduced more parameters and computational limitations.

As a workaround, we attempted to mimic a cross-attention-based block using only one encoder

module. We fed image features to the key and values and sketch features to the query part of the

transformer. In subsequent layers, we repeatedly used the initial sketch features as queries, while

the consecutive hidden representations served as keys and values.

This approach improved accuracy overall. However, during qualitative assessment, we ob-

served instances where it detected objects not present in the sketches. To address this issue, we

sought a way to incorporate sketch features into the image features. We devised a simple trick

based on our discussion of fusion techniques. We passed the element-wise addition of photo and

sketch features as keys and values, while sketches served as queries. This yielded the best results

both quantitatively and qualitatively, with an AP.5 of 82.7% and no false detections.

As a result, we use this approach and integrate it into our final version of Sketch Canvas DETR

as shown in Figure 5.1

5.8 Experiments

The chosen evaluation metric for our assessment is AP0.5, as detailed in Section 2.13. From the

results presented in Table 5.1, it is evident that the highest score was achieved when utilizing the

cross-attention module described in Section 5.7.1, where the query consists of the sketch, and both

key and value incorporate information from both the sketch and photo modalities.

The results reveal the impact of various fusion techniques. Simple fusion methods, such as

addition, yielded satisfactory results, while more complex techniques like concatenation demon-

43



Deep Wilson Aricatt, MSc dissertation

strated superior performance. Additionally, we observed that employing a shared backbone did

not significantly compromise accuracy, leading to lighter models and faster training times.

Table 5.1: Sketch Canvas DETR Experiments

Experiment Name (Sketch:S, Photo:P ) AP.5

S, P Self-attention Element-wise Addition Fusion
(Separate backbone)

74.5

S, P Self-attention Element-wise Addition Fusion with 50 percent synthetic sketches
(Separate backbone)

71.5

S, P Self-attention Element-wise Addition Fusion
(Shared backbone)

75.8

S, P Self-attention Element-wise Addition Fusion (Learnable Embeddings)
(Shared backbone)

Failed

S, P Self-attention Concatenation Fusion
(Shared backbone)

82.1

S, P Self-attention Element-wise Addition Fusion with decoder conditioning
(Shared backbone)

71.5

S, P Cross-attention Encoder (Query: S, Key, Value: S add P )
(refer Section 5.7.1)

82.7

S, P Cross-attention Encoder (Query: S, Key, Value: S concat P )
(refer Section 5.7.1)

Failed

5.9 Results

We present the results obtained from our model with the highest evaluation metric score, which

is the Sketch Canvas DETR model employing the cross-attention block, as discussed in Section

5.7.1. Our results showcase the performance of the model in handling user sketch queries that

contain both single and multiple instances. This demonstrates the robustness and versatility of our

approach.
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Figure 5.12: Single instance sketch queries: Results - Part 1
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Figure 5.16: Single instance sketch queries: Results - Part 2
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Figure 5.20: Single instance sketch queries: Results - Part 3
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Figure 5.24: Single instance sketch queries: Results - Part 4
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Figure 5.27: Single instance sketch queries: Results - Part 5
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Figure 5.32: Multiple instance sketch queries: Results - Part 1
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Figure 5.36: Multiple instance sketch queries:Results - Part 2
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Figure 5.40: Multiple instance sketch queries:Results - Part 3
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Figure 5.44: Multiple instance sketch queries:Results - Part 4
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Figure 5.47: Multiple instance sketch queries:Results - Part 5
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6 CONCLUSIONS

In the course of this thesis, we conducted baseline experiments alongside algorithms designed

to detect objects in natural images using sketches as queries. We addressed specific limitations

discussed in Section 1.4 by providing innovative solutions.

6.1 Future Work

Through our experiments, we identified a critical bottleneck in the current method, namely the

ResNet feature extractor. We recognized that superior initial embeddings can significantly impact

the performance of the transformer.

To overcome this challenge, we propose the following directions for future work:

• Utilize CLIP embeddings [94] to enhance initial embeddings. CLIP’s models, pretrained on

text, offer the potential for superior embeddings and can be invaluable in open vocabulary

object detection scenarios.

• Focus on aligning sketch tokens closely with bounding box tokens within the natural image.

This alignment can be achieved through the application of contrastive loss methods.

• Consider the possibility that sketches may not require a separate backbone. Exploring alter-

natives, such as representing the sketch as a vector graphic or line drawing, could improve

overall performance. Since transformers excel at handling sequences, this approach could

be particularly beneficial.

We are excited to announce the open-sourcing of the Sketch Canvas DETR codebase. We hope

that this work will inspire and accelerate research in this field in the years to come.
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APPENDIX 1 - WORK PLAN

Figure 6.1: Gantt Chart
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APPENDIX 2 - TRAINING SUMMARY

All training needs have been fulfilled

6.2 Soft IT Skills

We learnt how to conduct proper literature surveys. Additionally, tools like latex was reviewed

and explored in detail

6.3 Professional Skills
Professional Skill Training needed Y/N? Current status of training. If not complete, what is the

plan to complete it. If training was not needed, state
how it had been completed previously.

Report writing N
Research methods,
literature reviewing
(training provided
by the library later
in the semester –
see timetable)

N

Oral presentation
skills

N

Time plan-
ning/Project
planning

N

Plagiarism training
(Go to SurreyLearn
and find it in The
Student Common
Room)

N

6.4 Specialist Skills

Note you should adapt this table specifically to your project, this template is just given as a guid-

ance.

Specialist Skill Training required
Y/N?

Deep learning frameworks Y

PyTorch and other frameworks were explored

Mathematics – Refreshing or developing knowledge in maths. e.g. Maths Drop In Centre available:
http://personal.ee.surrey.ac.uk/Personal/W.Wang/MathsDropInCentre.html The “Casual Drop-In Use” is
available to MSc students.

N
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Hardware programming, e.g. Arduino, Raspberry PI, FPGA Note that the Electronics and Amateur
Radio Society is a great extra curricular way of broadening your skills in firmware programming with
devices like Ar-duino. Why not go and join them and attend the courses that students deliver to students?
More info at: https://www.ussu.co.uk/ClubsSocieties/societies/ears/Pages/home.aspx

N

Practical skills, e.g. soldering, test and measurement, PCB design You will need to discuss more specif-
ically the details with your supervisor if you undertake a practical project of this nature and also you
should ensure you have completed a risk assessment for specialist health and safety.

N

Specialist simulation packages. Is there a specialist simulation package that you need to learn use? If you
do need to learn a specific simulation package you will certainly need to discuss this with your supervisor
and find out how you will learn it.

N

Specialist test and measurement equipment. Some projects involve undertaking a number of practical
measurements and may require learning specifically how to use the equipment required for the task.

N

6.4.1 Background state of the art

What are the key words or phrases that you need to search for in the literature regarding the state

of the art in relation to your project? You should have discussed this with your supervisor. There

may be more than five key words or phrases so you can add more if you need to.

1. sketch

2. FG-SBIR

3. deep learning

4. cross-modal

5. attention

Who are the key scholars in the field where research papers they produce are of relevance to

read? You should make note of the key publications you have been reading and have identi-fied

as an important resource in completing the literature review of your project that you should have

now done.

Key scholars: Prof. Yi-Zhe Song , Ross Girshick , Aditay Tripathi etc.

6.4.2 Theoretical knowledge for your project

What are the key items of theory you need to understand in order to undertake the work rele-vant

to your project? How have you progressed with this theory?

1. transformers
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2. self-attention

3. vit

The above topics were explaored by reveiwing survey papers, YouTube videos and blogs. Discus-

sions with co-supervisor was held to understand domain knowledge in depth.
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